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Designing Conversational Agents for Supporting Clinicians’ Exploration of Care
Quality Data

HAMZAH ZIADEH

As clinicians struggle to improve their care [11, 18, 21], decision support systems such as conversational assistants (CAs)
can support clinicians in exploring care quality data to identify improvements [1, 15]. CAs can allow for specifying
actions (e.g. creating a line plot) in natural language to simplify interactions compared to traditional interfaces which
required clinicians to learn how to use an interface [7, 12, 22]. While expert users (e.g. clinicians, data scientists, etc.)
reported CAs as easier and faster to use compared to dashboards [1], search engines [3], and databases [7, 12, 22], only
few studies investigated designing CAs for clinicians when exploring care quality data [1, 2]. However, these studies
typically explored clinicians interactions with CAs in limited lab settings and only evaluated task performance (e.g.
time for completing task) [1, 2].

When exploring care quality dashboards, clinicians often feel overwhelmed with the number of indicators and lacked
the statistical knowledge to explore data [6, 18, 21]. While CAs can suggest actions for data exploration, clinicians need
to understand the provenance of insights produced from the data [10, 19] (i.e. the data sources, aggregation methods,
actions taken, reasoning, etc. [5]). To communicate provenance, some CAs employed step-wise validation in which users
stated a goal (e.g. creating a prediction model) and validated CAs’ data exploration actions towards that goal [7, 16].
This required CAs to state every action and ask for feedback from users to allow for changes [7, 16]. While studies
hypothesised that step-wise validation can increase users’ sense of agency (feeling of control over the data exploration)
and CAs’ explainability (ability to explain the findings behind the suggested insight), it can also increase the workload
on users [7, 14, 19]. Moreover, many clinicians lack the knowledge to validate data exploration actions or gaining bias
towards suggested actions [4, 8, 19].

To investigate supporting clinicians during data exploration, previous studies [4, 6, 21] used goal setting theory
which describes the process and requirements for users to create goals from exploring data [13]. However, recent
reviews hypothesised that goal setting theory does not align with needs of clinicians [4]. For example, goal setting
theory aims to describe how an individual can explore self-tracked data to set personal goals and motivate actions
towards change [13]. On the other hand, clinicians explore data to facilitate group discussions with colleagues for goal
setting and brainstorm organisational changes to provide better care [6, 17, 21]. Typically, clinicians have awareness of
their shortcomings and already feel motivated to improve regardless of goal setting [6, 9, 21].

In my future work I aim to explore using alternative frameworks for analysing clinicians’ data exploration to design
CAs. For example, CP-FIT [4] describes the cyclical process of gathering, exploring, and disseminating care quality data
in hospitals. Additionally, the knowledge generation loop model defines concrete phases and problems involved in
exploring complex data sets such as those found in care quality registries [20]. By further understanding the tasks and
motivations of data exploration, I aim to design, evaluate, and iterate on a CA that can support clinicians.
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